近几年,随着全球能源使用量的不断增加,对石油的需求量提高,新油田的开采、勘探活跃。最近石油的开采不仅从陆地垂直开采,而且增加了从陆地向海滩油田开采和海上基地多种开采的倾斜开采。这种倾斜开采使用的是非磁性钻铤(NMDC:Non-Magnetic Drill Collar)。钻铤大多搭载为掌握钻头前端位置信息的地磁测定器和地下信息(气体、岩质等)的电子仪器。因此要求非磁性的同时,NMDC的壁厚要薄壁化,而且要求强度更高的材料。此外,地下也有硫化氢活跃的场所,在开采泥水中含有高浓度的氯化钠和氯化钾等氯化物,所以,要求钻铤具有优良的抗严酷腐蚀环境的耐蚀性。为了满足这些要求,优化Cr-Mn系奥氏体系不锈钢的化学组成和制造条件,开发了兼备高强度和良好耐蚀性的非磁性钻铤用不锈钢“DNM140”。但是,由于开采环境日益变化,开采深度的增加等,使用环境更为严酷,要求钻铤必须具有更高的耐蚀性。
本研究中,为了开发比DNM140耐蚀性更好的非磁性钻铤用不锈钢,以DNM140为基础,对增加提高耐蚀性元素Mo、N含量的合金,进行了以碳氮化物析出行为、温态加工后的力学性能和耐蚀性为主的调查,研究了非磁性钻铤的应用。
1、开发钢及试验方法
1.1开发钢
原创表1是这次用于评价的开发钢及DNM140的化学成分。开发钢以DNM140为基础,Mo为2.1%、N为0.53%,与DNM140相比,Mo、N含量增加。开发钢和DNM140两个钢种都含有大量的氮,所以要求提高钢水中的氮溶解度,而且在浇铸时,为了不引起吹氮,需要增大凝固时的奥氏体相的量。关于钢水中的氮固溶度,有几篇介绍增加Cr、Mn含量提高氮固溶度的论文,开发钢和DNM140都积极添加了Cr、Mn。
原创表1:开发钢和DNM140的化学成分
由用热力学计算软件Thermo-Calc以Fe为基础计算的横坐标为N含量的开发钢相图和横坐标为温度的开发钢相图可以看出,开发钢的相结构中有大量的氮溶解度大的奥氏体相,并且凝固后不存在气体相,所以,预计可以获得没有气泡缺陷的优质钢锭。此外,在约1200-1550K的温度范围,是奥氏体单相,预计在约1123K以下除Cr2N外,M23C6、σ相等作为稳定相存在。
1.2试验方法
两个钢种均用真空高频感应炉,制作成50kg钢锭,采用热锻造加工成30mm方的形状后,在1373-1423K保持3.6ks后进行水冷的固溶化热处理,之后,观察组织和测量硬度。此外,为了调查碳氮化物的析出行为,在1372K×3.6ks固溶化热处理后,用873-1173K实施900-3600s的敏化热处理,观察其组织,并对一部分试样测量了孔蚀电位。另一方面,为了调查奥氏体相的稳定性,进行60%的冷态压缩加工,测量了其导磁率。温加工材的评价是在1373K×3.6ks固溶化热处理后,在适当的温度、断面收缩率,用600t动力压力机进行正挤压加工。然后,调查了耐晶间腐蚀性、耐盐酸腐蚀性、拉伸特性和冲击特性。观察和测量方法如下。对50kg钢锭的状态进行了宏观观察,两个钢种均没有发现铸造缺陷和气泡缺陷。
1)组织观察
对固溶化热处理材,从延伸锻造方向取试样,镜面研磨后用酸性苦味酸乙醇溶液腐蚀,用光学显微镜观察了腐蚀面。此外,对一部分敏化热处理材用扫描电子显微镜(SEM)观察晶界析出的碳氮化物。
2)硬度测量
采用维氏硬度试验机,按JIS Z2241的规定进行。
3)导磁率
采用直径5mm,长度5mm的试样,用VSM(Vibrating Sample Magnetometer)在外部磁场16kA/m(200Oe)进行测量。
4)耐晶间腐蚀性
敏化热处理材按JIS G0571的规定,进行10%草酸腐蚀试验。用10%草酸水溶液,90s电解腐蚀后,用光学显微镜观察其组织。对温加工材按JIS G0575的规定,实施硫酸-硫酸铜腐蚀试验。
5)耐孔蚀性
耐孔蚀性采用JIS G0577规定的方法,在303K、3.5%氯化钠溶液中测量了阳极极化曲线,将孔蚀成长引起的电流密度超过10-4A/cm2的电位(V‘c100)作为孔蚀电位测量。
6)拉伸特性
由正挤压加工的试验用料制作平行部的直径5mm,长度30mm的试样,按JIS Z2241的规定实施了室温下的拉伸试验。
7)冲击特性
由正挤压加工的试验用料制作JIS 4号试样(2mm V型缺口试样),按JIS Z2242的规定实施了室温下的夏比冲击试验。
8)耐盐酸腐蚀性
由正挤压加工的试验用料制作直径10mm,长度30mm的试样,在10%盐酸中浸渍6h,测量了其腐蚀减量。
2、试验结果及分析
2.1固溶化热处理后的组织及硬度
观察各固溶化热处理后的显微组织及维氏硬度的测量结果发现,两个钢种(开发钢和DNM140)不管固溶化热处理高低,均没有发现铁素体相,呈奥氏体单相组织。此外,虽然发现两个钢种在1423K晶粒有些粗大化,但硬度没发现大的差异。
2.2冷态加工后的导磁率
表2是开发钢和DNM140的60%冷态压缩加工后的导磁率测量结果。例如,普通SUS304如进行这种加工,由于生成加工感应马氏体,导磁率为1.010以上。但是,开发钢即使进行60%冷态加工也与DNM140一样,保持在1.010以下的导磁率,说明奥氏体相稳定。
原创表2:开发钢和DNM140的相对导磁率(在60%冷态加工后)
2.3敏化热处理后的耐晶间腐蚀性和耐孔蚀性
2.3.110%草酸腐蚀试验
原创图1是1373K固溶化热处理后的各钢种的时间-温度-敏化图(TTS图)。DNM140的敏化曲线鼻子尖位于1073-1123K,而开发钢的敏化曲线的鼻子尖位于1123-1173K,敏化曲线的鼻子尖温度升高。认为这是由于N含量增加所致,推测与Thermo-Calc计算相图的Cr2N固溶化温度上升有关。此外,开发钢和DNM140的敏化时间不同,开发钢的敏化时间长,所以,用增加Mo含量来提高开发钢对敏化的抵抗性。
2.3.2孔蚀电位测量
原创图1草酸腐蚀试验的TTS图
为评价耐氯离子的孔蚀性,测量了阳极极化曲线。试验在303K的3.5%NaCl中进行,观察参照电极SCE的电流密度10-4A/cm2时的孔蚀电位(V‘c100)可以发现,对固溶化热处理材,相对于在3.5%NaCl中DNM140的孔蚀电位480mV vs SCE,开发钢在该溶液的氧化还原电位约900mV vs SCE以下的电位,没有发生孔蚀,开发钢大幅度提高了耐孔蚀性。一般添加在不锈钢中的Mo和N对耐孔蚀性有极好的效果。Mo在钝态皮膜的外层,作为钼酸存在,防止氯化物离子的进入,抑制皮膜的破坏。此外,N通过生成铵,使钢表面的pH值上升,可以说促进钝态化。认为在Cr-Mn系奥氏体不锈钢的开发钢中,也由于同样的效果改善了耐孔蚀性。另一方面,对施以1123K×3.6ks的热处理的敏化热处理材,试验钢的孔蚀电位大幅度降低。SEM观察到沿晶界发生孔蚀,所以,由于敏化热处理导致的Cr系氮化物析出,在Cr、N的晶界附近浓度降低,所以局部耐孔蚀性劣化。
根据上述结果,下面介绍以图1的TTS线图为基础,避免碳氮化物析出,在获得良好的耐蚀性和充分强度的温度区域,进行温加工的试样特性。
2.4温加工后的耐晶间腐蚀性
2.4.110%草酸腐蚀试验
开发钢和DNM140进行了10%草酸腐蚀试验。结果是,温加工后,两个钢种均呈台阶状组织,耐晶间腐蚀性良好。
2.4.2硫酸-硫酸铜腐蚀试验
观察JIS G0575规定的硫酸-硫酸铜腐蚀试验后试样的外观发现,两个钢种弯曲到180度也没有发现裂纹,开发钢与DNM140一样具有同等的良好的耐晶间腐蚀性。
2.5温加工后的耐盐酸腐蚀性
在10%盐酸中浸渍6h后,测量其腐蚀减量。与DNM140相比,开发钢的腐蚀减量大幅度减少,改善了耐盐酸腐蚀性。研究人员对酸性环境中N的影响持有不同的观点,效果不明确。开发钢腐蚀减量的改善不仅仅是增加Mo含量提高了耐孔蚀性,而且,溶解中生成的MoO4-吸附表面,提高了耐酸性环境的全面腐蚀性。
2.6温加工后的力学性能
表3是拉伸试验和夏比冲击试验的结果。两个钢种的0.2%屈服强度均在965MPa(140ksi)以上,抗拉强度为1034MPa(150ksi)以上,伸长率为25%以上。JIS4号试样(2mmV型缺口)的夏比冲击功是250J/cm2以上,强度和韧性都良好。
原创表3:开发钢和DNM140的力学性能
3、应用于非磁性钻铤
3.1试验用料和制造工序
将开发钢作为“DNM140-HRC”实施量产试制,化学成分示于表4。非磁性钻铤用不锈钢一直是由大同特殊钢公司生产,制造工序是先在20t电弧炉熔解,然后浇铸成6-10t的钢锭。这些工序是在大气中实施,再将钢锭用7000t锻造压力机进行热锻造。之后,材料固溶化热处理后用适当温度进行温加工,采用切削进行外径车削加工和钻孔加工。
原创表4:DNM140-HCR的化学成分
3.2特性
在固溶化热处理后温加工成制品尺寸直径约180mm的棒钢上,从距表层25mm下截取了耐蚀性评价和力学性能的试样。10%草酸腐蚀试验结果表明,呈台阶状组织,具有良好的耐蚀性。因为带有对晶间腐蚀的敏感性的特征,实施了硫酸-硫酸铜腐蚀试验,该试验虽检测出与富Cr的碳化物析出有关的晶间腐蚀敏感性,但在此没有发现裂纹。
原创表5是DNM140-HRC的拉伸强度和夏比冲击试验结果。0.2%屈服强度为965MPa(140ksi)以上,抗拉强度为1034MPa(150ksi)以上,伸长率为25%。此外,2mmV型缺口试样的夏比冲击功是290J/cm2以上。
4、结语
为了开发比DNM140耐蚀性更好的非磁性钻铤用不锈钢,以DNM140为基础,开发了增加提高耐蚀性元素Mo、N含量的合金“DNM140-HRC”,得出以下结论。
1)由于增加N含量,抑制δ铁素体生成,获得稳定的奥氏体组织。
2)增加Mo含量,由于碳氮化物析出引起的敏化时间长,所以提高了对敏化的抵抗性,发现耐晶间腐蚀性提高。此外,孔蚀电位上升,腐蚀量减少,耐孔蚀性和耐盐酸腐蚀性、耐晶间腐蚀性和耐孔蚀性提高。
3)DNM140-HRC在实机量产试制中,获得965MPa(140ksi)以上的强度,呈良好的耐蚀性,认为完全可以用于非磁性钻铤。
(来源:钢铁产业)